

Organic Flow Battery Development

Wei Wang, Wu Xu, Xiaoliang Wei, Murugesan Vijayakumar, Lelia Cosimbescu, and Vincent Sprenkle

Pacific Northwest National Laboratory Electrochemical Materials and Systems

DOE Office of Electricity Energy Storage Program – Imre Gyuk Program Manager.

OE Energy Storage Systems Program Review

September 16-19th, 2014

Major challenge of the current RFBs

$$E = \frac{NC_aFV}{n}$$

- \triangleright Increase C_a : Zn-I RFB
- ➤ Improve *V*: Nonaqueous RFB

Nonaqueous RFB Technology

Proudly Operated by Battelle Since 1965

Advantages of Nonaqueous RFB

- High voltage
- Multi-electron reaction
- Potential high energy/power density

CV of vanadium ions in aqueous (0.01 M VOSO₄ and 2 M $\rm H_2SO_4$ solution) and nonaqueous (0.01 M V(acac)₃ and 0.1 M TEABF₄ in CH₃CN) supporting electrolytes.

Current nonaqueous RFB Chemistries

- Metal coordinated redox couple
 - Metal coordination complexes (UMich)
 - Metal-based ionic liquids (Sandia)
- ☐ Total organic redox flow battery (ANL)
- ☐ Hybrid non-aqueous RFBs
 - Semi-solid lithium flow battery (MIT)
 - Li-redox flow battery (UTexas/JAIST)
 - Li-S flow battery (Stanford/MIT/PNNL)
 - Metal-organic hybrid RFB (PNNL)
 - Low solubility
 - Limited electrolyte stability
 - Capacity decay during cycling
 - Cost

Metal-Organic Redox Flow Battery (MORFB)

Proudly Operated by Battelle Since 1965

Anthraquinone based nonaqeuous electrolyte

AQ redox reaction mechanism

very low solubility (< 0.05 M) in most electrolytes of relatively high polarity

Metal-organic hybrid redox flow battery

- Anode/anolyte: metal or metal ions redox couple (Li/Li+)
- Catholyte: organic redox active agent

Advantage:

- Flexibility with a designable voltage window
- Flexibility in structure and redox center design
- Natural abundance in resource.

Structure modification to increase solubility 10X

$$O + CH_3(OCH_2CH_2)_3OH \xrightarrow{KOH} O = O$$
 $CI + CH_3(OCH_2CH_2)_3OH \xrightarrow{KOH} O = O$
 $CI + CH_3(OCH_2CH_2)_3OH \xrightarrow{KOH} O = O$
 $CI + CH_3(OCH_2CH_2)_3OH \xrightarrow{KOH} O = O$

Ferrocene based redox active species

- Low solubility: 0.04M in EC/PC/EMC-1.2M LiTFSI
- Modified Ferrocene with an ionic charged tetraalkylammonium pendant arm with a TFSIcounter anion, resulting in a 20-fold increase in its solubility (0.85M in EC/PC/EMC-1.2M LiTFSI).

Solvation Chemistry of the FCN-TFSI

- No chemical shift change at low concentrations of either pristine ferrocene or Fc-TFSI
- Constant spacing between solvent peaks
 - → no cation-solvent chemical binding
- Only protons on substituted rings shift
 solvation primarily on the cation

Electrochemical performance of the FCN-TFSI

X. Wei, et. al. submitted

High energy density Li-TEMPO NRFB

High voltage TEMPO based electrolyte

2,2,6,6-tetramethylpiperidine-1-oxyl

Example of the TEMPO discharge curve

High concentration TEMPO electrolyte

- Solubility > 5 M in EC/PC/EMC
- ➤ 2.0 M TEMPO in 2.3 M LiPF₆ in EC/PC/EMC with theoretical energy density of 187Wh/L

Electrochemical performance of the TEMPO

Proudly Operated by Battelle Since 1965

(a) CV curves of 0.005 M TEMPO in 1.0 M LiPF₆ on a glassy carbon electrode at scan rates ranging from 10–500 mV s⁻¹; (b) ratio of the oxidation and reduction peak currents with respect to scan rate; (c) CV curves for the 5th, 50th, 100th, and 200th cycles at 50 mV s⁻¹.

Cycling performance of Li-TEMPO NRFB at 0.1M

Electrochemical performance of the Li|TEMPO flow cells: (a) rate capability and (b) cycling efficiency and capacity at 0.1 M TEMPO in 1.0 M LiPF₆ with 15 wt% FEC and Li-graphite hybrid anode at 5.0 mA cm⁻².

Cycling performance of Li-TEMPO NRFB at 0.8M

Cycling efficiencies and volumetric capacities of the 0.8 M Li|TEMPO flow cells at 5 mA cm⁻²; (b) Voltage profiles of the 2nd, 10th, 20th, and 30th cycles for the Li|TEMPO flow cell at 0.8 M TEMPO, showing increased overpotential over cycling.

Cycling performance of Li-TEMPO NRFB at higher concentration

Proudly Operated by Battelle Since 1965

At high TEMPO concentration the severe lithium dendrite issue greatly limit the cycling. A hybrid anode is designed to enable the charge/discharge cycle.

Voltage curves with respect to energy density for the 1.5 M (using 2.5 mA cm⁻²) and 2.0 M (using 1.0 mA cm⁻²) Li|TEMPO flow cells.

Conclusions and future work

Proudly Operated by Battelle Since 1965

➤ We proposed to a new hybrid metal-organic redox flow battery.

- Molecular structure design and functionalization is a feasible strategy to increase the solubility and therefore energy density of the nonaqueous flwo battery.
- ➤ We demonstrated a high energy density Li-TEMPO nonaqueous RFB (>125Wh/L).
- Continue to investigate lithium dendrite growth and mitigation, develop new nonaqueous flow battery chemistries.

Acknowledgements

- ➤ US Department of Energy's Office of Electricity Delivery and Reliability Dr. Imre Gyuk, Energy Storage Program Manager.
- Pacific Northwest National Laboratory is a multi-program national laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract DE-AC05-76RL01830.